

Cost-Benefit Analysis between SSO Materials for Composting and LFG Collection for RNG Plant

March 2023

About Us

Renovation for Sustainable Technology for Organic Waste Recycling toward Energy (ReSTORE)

Mission Statement

Committed to reducing waste volume, decreasing greenhouse gas emissions, conserving nature, and combating the challenges of climate change

Problem Statement and Objectives

- Existing landfill site of the county is almost at full capacity
- Projected to reach capacity in the next 9 years
- County is planning for the next phase

Analyze the cost-benefit ratio of a new RNG plant and source separated organics and propose suitable landfill gas reuse technology

Waste Management Scenario of the County

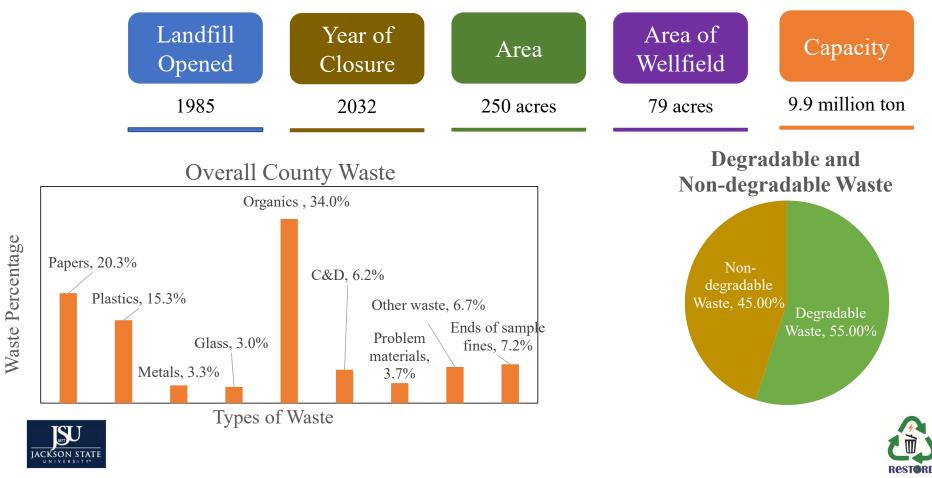
Landfill Components: Household Hazardous Waste (HHW), Wood yard, C&D, Material Recovery Facility (MRF)

Accommodates all municipalities

Every municipality independently handles its waste and recycling program

County collects waste with collection trucks

55% degradable waste



Non-degradable portion needs to be separated

Background Information

Renewable Natural Gas (RNG)

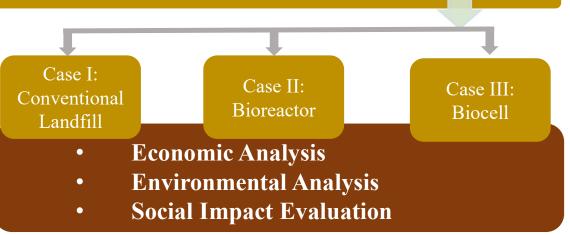
Biogas Produced from organic waste

Purified to remove impurities such as CO_2 , H_2S

Renewable Energy Source

LandGEM Model for CH₄ Emission Estimation

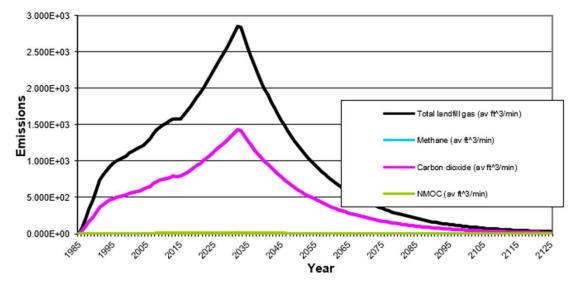
Input of Required Parameters


Analysis for RNG Project: Process Flow

Analysis of Optional Parameters

Run Models for Three different K Values in LFGcost-Web

Analysis for RNG

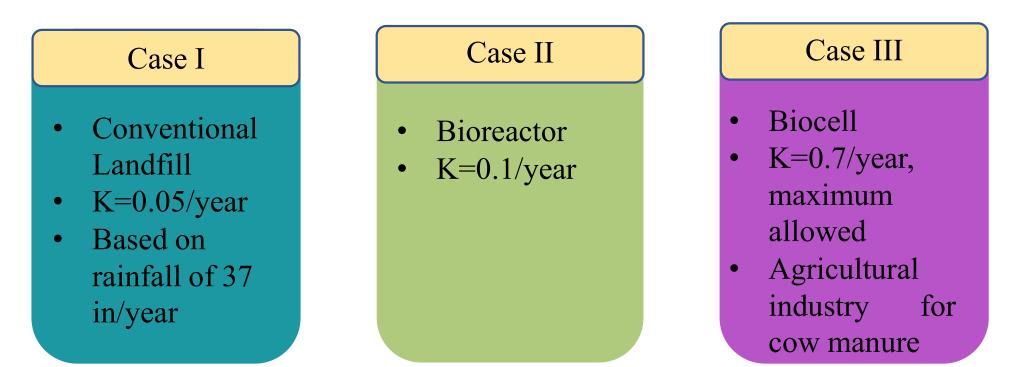

LandGEM Model for Methane Estimation

Equation used in the Model:

Result from the Model:

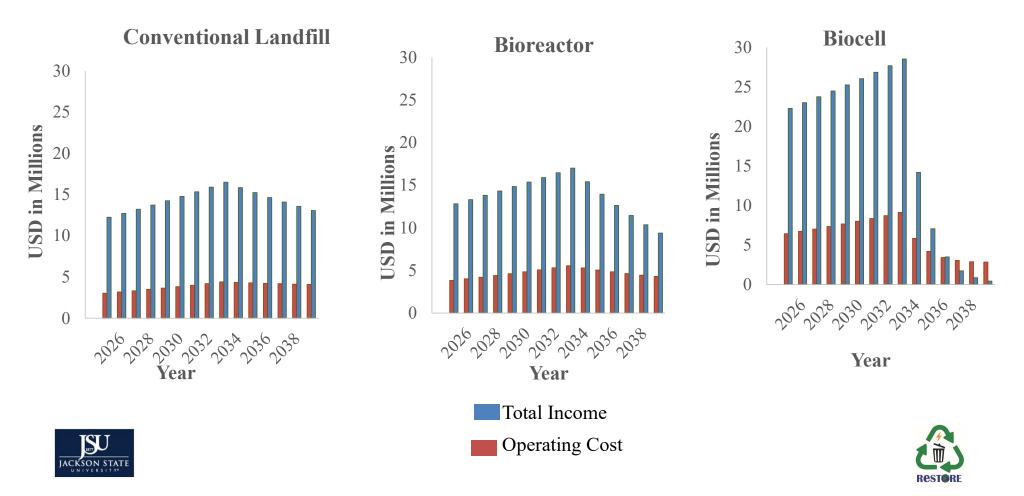
$$Q_{CH4} = \sum_{i=0}^{n} \sum_{j=0.1}^{1} k. L_0(\frac{M_i}{10}). e^{-k_{tij}}$$

More than 1000 ft³/min



Different Cases considering K values

Restore


Economic Outputs

	Output Data		
Output Type	Case I (Conventional landfill)	Case II (Bioreactor)	Case III (Biocell)
Design project size (ft ³ /min LFG)	2,824	3,618	6,701
Total installed capital cost (USD)	27,136,002	31,797,621	53,115,449
Internal rate of return	37%	<mark>42%</mark>	-31%
Years to breakeven	4	<mark>3</mark>	3
JACKSON STATE			

Analysis for RNG

Economic Outputs

Evaluation of Economic Outputs

Biocell gave the largest flow

Capital cost for Biocell was highest due to the proportional relationship of capital cost and increased flow rate

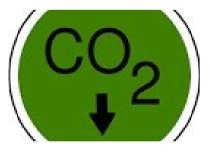
Internal rate of return (IRR) was highest for Bioreactor: 42%

Renewable projects are capable of delivering an IRR of 12-16%

Breakeven years of 3 to 4 years for all the cases were feasible for 15-year project

Additional renewable credit increased the net income for conventional and bioreactor cases

Total incomes were higher than the operating cost, throughout the project duration for conventional and bioreactor case



Evaluation of Environmental Outputs

Biocell case showed the best results

Significant removal of CO₂ emissions for all three cases

Collect 9000 million ft^3 of CH_4

Has the potential to reduce GHGs emissions by 75% compared to gasoline or diesel fuel

Evaluation of Social Impact

Job opportunities

Increased sale

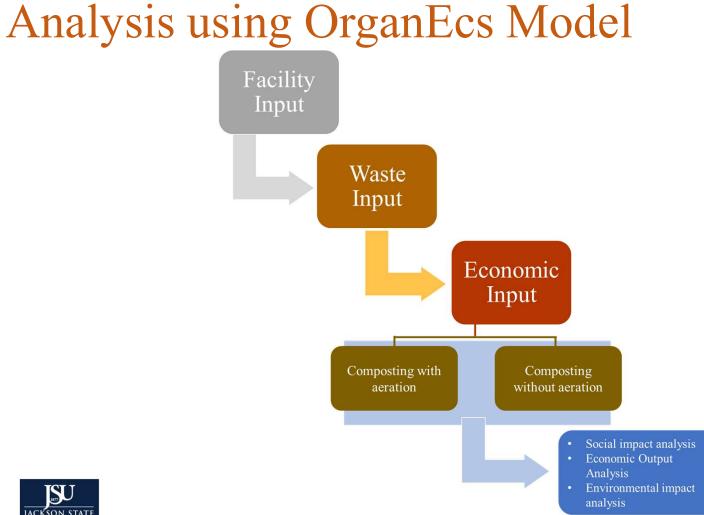
5

Fresh revenue

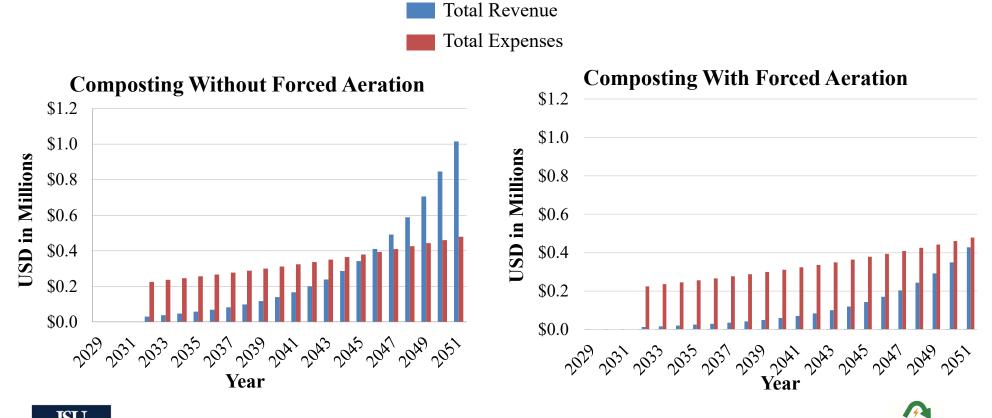
Increased cash flow

Migration to the county

New business center



Improved public perception



Restore

Economic Outputs from OrganEcs Model

Evaluation of Outputs for Composting

IRR for forced aeration: -4%

Forced aeration system will not be viable

Total expense were higher than the total revenue

System without aeration showed profit after 13 years

Forced aeration system does not show any profit

Additional mining and sorting out of organic waste will be required

Analysis for Composting 🕍

Evaluation of Environmental Impact

Reduced use of chemical tilizers

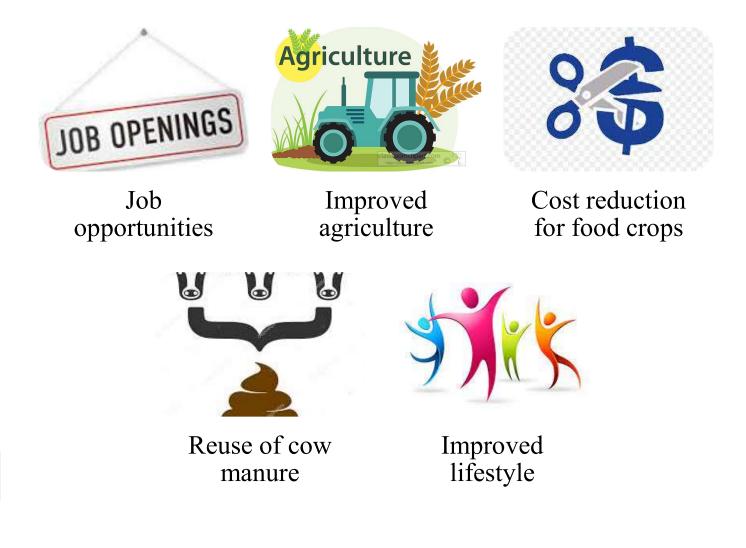
Carbon capture

Securing public health

Reduced GHGs

emissions

Less chemicals in waterbodies



Analysis for Composting 🎬

Restore

Evaluation of Social Impact

Comparison between Two Approaches

	RNG Plant	Composting	
Profit	Two cases showed significant profit	No considerable profit	
IRR	37-42%, negative for case III	Negative or non-viable	
Breakeven years	3 or 4 years	After 13 years or none	
Capital Cost	Higher	Lower than RNG	
Revenue	Additional revenue from RIN credit	No additional revenue	
Leachate treatment	Recirculation of leachate for bioreactor or biocell	Mining and separating of waste is needed before production	
Production	Immediate production of enhanced CH ₄	Mining and separating of waste is needed before production	
O&M	Advanced monitoring is required	Monitoring is not as critical as RNG plant	

SWOT Analysis

Strengths

Advanced technology
High LFG emission
Reduced GHG emissions
Immediate LFG production
RIN credits for fuel
No additional leachate treatment in case of bioreactor
Improved LFG reuse

Weakness

High capital cost
High-level expertise for construction and operation
Greater maintenance cost

RNG Project

Opportunities

•High profit •New job opportunities •Higher IRR •Low breakeven points •Public acceptance •High market demand for vehicle fuel

Threats

Surplus or shortage of leachate
Nuisance due to the construction and operation of a large plant
Risk of accidents due to high temperature
Legal restrictions on gas

SWOT Analysis

Strengths

•Reduced GHG emissions into the environment

- •Improved waste reuse
 - •Simple technology
 - Lower capital cost
 - •Low maintenance
- •No high skilled labor

Weakness

 Sorting out organic waste
 Mining the existing waste adds additional cost

- •No leachate treatment
- •No additional revenue

Composting Project

Opportunities

New job opportunities
Reduced demand for chemical fertilizer

Threats

No gross profit
Negative IRR
Odor issue
Social barriers to reusing waste as fertilizer for food crops

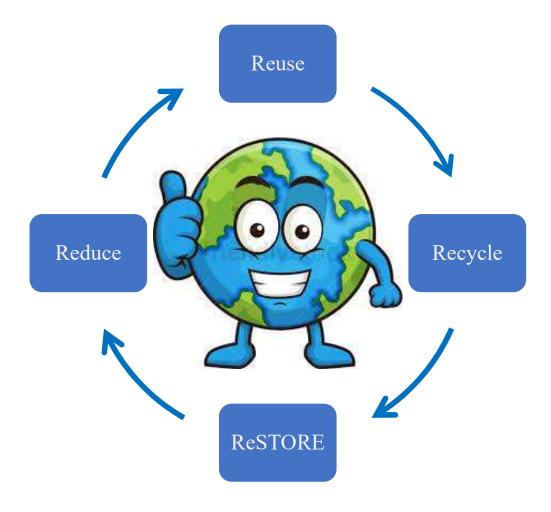
Recommendation for the County

- ReSTORE recommends building a new RNG plant with a landfill gas collection system, preferably a bioreactor
- The county can apply for a construction grant from the government to reduce initial investment
- Maintenance activities should be conducted carefully
- The cover should be less permeable than that of the liner for the bioreactor
- No leachate treatment will be required due to recirculation
- There should be concrete contingency plans if the amount of leachate is surplus or short
- Proper monitoring for temperature will be needed to avoid any fire incidence due to raised temperature

Acknowledgment

Advising Faculty

Dr. Sadik Khan, P.E. Associate Professor Department of Civil and Environmental Engineering, Jackson State University


Mentor

Mr. Matthew Lamb Sr. Scientist Smith Gardner, Inc

Ms. Mateja Vidovic Klanac, Project Professional, SCS Engineers andMs. Hailey Tatum, Sustainability Business Analyst, WM Sustainability Rotation Program

Thank You

